
A Programmer's Reference Guide to mysql and Perl DBI

June 30, 1998

1.0 How to express Literals in mysql
1.1 Strings
1.2 Numbers
1.3 NULL
1.4 Database, table, index and column names

2.0 Column Types
2.1 More about data types

2.1.1 Database size info.
2.1.2 The numeric types
2.1.3 TIMESTAMP type
2.1.4 TEXT and BLOB types
2.1.5 ENUM type
2.1.6 SET type

2.2 Choosing the right type for a column.
2.3 Column indexes
2.4 Multiple column indexes
2.5 Type mapping to ease moving table definitions between different

databases engines

3.0 Commands and Syntax
3.1 CREATE DATABASE syntax.
3.2 DROP DATABASE syntax.
3.3 CREATE TABLE syntax.
3.4 ALTER TABLE syntax
3.5 DROP TABLE syntax.
3.6 DELETE syntax.
3.7 SELECT syntax
3.8 JOIN syntax
3.9 INSERT syntax
3.10 REPLACE syntax
3.11 LOAD DATA INFILE syntax
3.12 UPDATE syntax
3.13 SHOW syntax. Get information about tables, columns...
3.14 EXPLAIN syntax. Get information about a SELECT.
3.15 DESCRIBE syntax. Get information about columns.
3.16 LOCK TABLES syntax
3.17 SET OPTION syntax.
3.18 CREATE INDEX syntax (Compatibility function).
3.19 DROP INDEX syntax (Compatibility function).
3.20 Comment syntax
3.21 CREATE FUNCTION syntax
3.22 Is MySQL picky about reserved words?

4.0 Functions for use in SELECT and WHERE clauses
4.1 Grouping functions.
4.2 Normal arithmetic operations.
4.3 Bit functions.
4.4 Logical operations.
4.5 Comparison operators.
4.6 String comparison functions.
4.7 Control flow functions.
4.8 Mathematical functions.
4.9 String functions.
4.10 Date and time functions.
4.11 Miscellaneous functions.
4.12 Functions for GROUP BY clause.

5.0 The DBI interface
5.1 The DBI interface
5.2 More DBI/DBD information

1.0 How to express literals in mysql

1.1 Strings

A string may have ' or " around it.

\ is a escape character. The following escape characters are recognized:

\0 An ascii 0 character.
\n A newline character.
\t A tab character.
\r A return character.
\b A backspace character.
\' A ' character.
\" A " character.
\\ A \ character.
\% A % character. This is used in wildcard strings to search for %.
_ A _ character. This is used in wildcard strings to search for _.

A ' inside a string started with ' may be written as ".
A " inside a string started with " may be written as "".

Some example selects that shows how it works.

mysql> select 'hello', "'hello'", '""hello""', "'h"e"l"l"o"', "hel""lo";
1 rows in set (0.00 sec)

+-------+---------+-----------+-------------+--------+
| hello | 'hello' | ""hello"" | 'h'e'l'l'o' | hel"lo |
+-------+---------+-----------+-------------+--------+
| hello | 'hello' | ""hello"" | 'h'e'l'l'o' | hel"lo |
+-------+---------+-----------+-------------+--------+

mysql> select 'hello', "hello", '""hello""', "'ello", 'e"l"lo', '\'hello';
1 rows in set (0.00 sec)

+-------+-------+-----------+-------+--------+--------+
| hello | hello | ""hello"" | 'ello | e'l'lo | 'hello |
+-------+-------+-----------+-------+--------+--------+
| hello | hello | ""hello"" | 'ello | e'l'lo | 'hello |
+-------+-------+-----------+-------+--------+--------+

mysql> select "This\nIs\nFour\nlines";
1 rows in set (0.00 sec)

+--------------------+
| This
Is
Four
lines |
+--------------------+
| This
Is
Four
lines |
+--------------------+

If you want to insert binary data into a blob the following characters must be
represented by escape sequences:

\0 Ascii 0. Should be replaced with "\0" (A backslash and a 0 digit).
\ Ascii 92, backslash
' Ascii 39, Single quote
" Ascii 33, Double quote

One doesn't have to escape " inside ' and " inside '.

If you write C code you can use the C API function mysql_escape_string(char *to,char
*from,uint length) to escape characters for the INSERT clause. (Note that 'to' must be at
least 2 times bigger than from). In Perl you can use the quote function.

You should run the escape function on every possible string that may have a one of the
above special characters!

1.2 Numbers

Integers are just a sequence of digits. Floats use . as a decimal separator.

Examples of valid numbers are: 1221, 294.42, -32032.6809e+10.

1.3 NULL

When using the text file export formats, NULL may be represented by \N.

1.4 Database, table, index and column names

Database, table, index and column names all follow the same rules in MySQL.

A name may use alphanumeric characters from the default character set. This is by
default ISO-8859-1 Latin1 but may be changed when compiling MySQL.

Since MySQL needs to be able to decide if something is a name or a number the
following special cases occurs:

• A name can not consist of only numbers.
• A name may start with a number. This is a difference from many other systems!
• It is not recommended to use names like 1e. This is because expressions like 1e+1

may be interpreted like the expression 1e + 1 or the number 1e+1.
• Punctuation characters like . and @ are not allowed in names since they will be used

to extend MySQL.

In MySQL you can refer to a column with some of the following syntaxes:

 column
 table.column
 database.table.column
 table@database.column

If you are using 'column' or 'table.column' you will get an error if the name is not
unique among the used
tables!

2.0 Column types.

The following column types are supported:

 M means Max display size.
 L means the actual length in a single row.
 M means the maximum length.
 D means the number of decimals.

Name Description Size

TINYINT[(M)] [UNSIGNED]

[ZEROFILL]

A very small integer. Signed range -128 - 127.

Unsigned range 0 - 255.

1

SMALLINT[(M)]. [UNSIGNED]

[ZEROFILL]

A small integer. Signed range -32768 - 32767.

Unsigned range 0 -

65535. 2

MEDIUMINT[(M)]

[UNSIGNED] [ZEROFILL]

A medium integer. Signed range -8388608-8388607.

Unsigned range 0 - 16777215.

3

INT[(M)] [UNSIGNED]

[ZEROFILL]

A normal integer. Signed range -2147483648 -

2147483647. Unsigned range 0 - 4294967295.

4

BIGINT[(M)] [UNSIGNED]

[ZEROFILL]

A large integer. Signed range -9223372036854775808 -

9223372036854775807. Unsigned Range 0 -

18446744073709551615. Because all arithmetic is done

with signed BIGINT or DOUBLE, one shouldn't use

unsigned big integers bigger than

9223372036854775807 (63 bits) with anything else than

bit functions!

8

FLOAT(Precision) A small floating point number. Precision can be 4 or 8.

FLOAT(4) is a single precision number and FLOAT(8)

is a double precision number (se the DOUBLE entry).

This syntax is for ODBC compatibility. Range -

3.402823466E+38F - -1.175494351E-38, 0, -

1.175494351E-38 - 3.402823466E+38F.

4

FLOAT[(M,D)] A small floating point number. Cannot be unsigned.

Range -3.402823466E+38F - -1.175494351E-38, 0, -

1.175494351E-38 - 3.402823466E+38F.

4

DOUBLE PRECISION[(M,D)] A normal floating point number. Cannot be unsigned.

Range -1.7976931348623157E+308 - -

2.2250738585072014E-308, 0, 2.2250738585072014E-308

- 1.7976931348623157E+308.

8

REAL[(M,D)] Same as DOUBLE 8

DECIMAL [(M,D)] An unpacked floating point number. Cannot be

unsigned. Currently the same range maximum range

as a double. Behaves as a CHAR column

M+D

NUMERIC [(M,D)] Same as DECIMAL M+D

TIMESTAMP [(M)] An automatic timestamp. If you have many

TIMESTAMP columns only the first one is automatic

4

DATE A type to store date information. Uses the "YYYY-

MM-DD" syntax, but may be updated with a number

or a string. Understands at least the following

syntaxes: 'YY-MM-DD', 'YYYY-MM-DD', 'YYMMDD'

and full timestamps (YYYYMMDDHHMMDD).

Range 0000-00-00 to 9999-12-31.

3

TIME A type to store time information. Uses the

"HH:MM:SS" syntax, but may be updated with a

number or a string. Understands at least the following

syntaxes: 'HH:MM:SS, 'HHMMSS', 'HHMM', 'HH'.

3

DATETIME A type to store date and time information. Format

"YYYY-MM-DD HH:MM:SS". Takes 8 bytes. Range

'0000-01-01 00:00:00' - '9999-12-31 23:59:59'.

8

YEAR A type to store years. Format "YYYY" or "YY". Takes 1

byte. Range 0, 1901-2155. 2 digits years in the range

00-69 is assumed to be 2000-2069 and will be sorted

correctly. (now type for MySQL 3.22)

1

CHAR(M) [binary] A fixed length string that is always filled up with

spaces to the specified length. Range 1 - 255

characters. All end space are removed when retrieved.

Is sorted and compared case insensitively unless the

binary keyword is given.

M

VARCHAR(M) [binary] A variable length string that is stored with its length.

NOTE: All end space are removed when storing it

(not ANSI SQL). Maximum range 1 - 255 characters. Is

sorted and compared case insensitively unless the

binary keyword is given. @tab

L+1

TINYTEXT and TINYBLOB A TEXT/BLOB with max length of 255 characters. L+1

TEXT and BLOB A TEXT/BLOB with max length of 65535 characters. L+2

MEDIUMTEXT and

MEDIUMBLOB

A TEXT/BLOB with max length of 16777216

characters.

L+3

LONGTEXT and LONGBLOB A TEXT/BLOB with max length of 4294967295

characters.

L+4

ENUM('value','value2',...) A string object that can have only one set of allowed

values (or NULL). See section 2.1 More about data

types.

1 or 2

SET('value','value2',...) A string object that can have one or many values of a

set of allowed values. See section 2.1 More about data

types.

1-8

2.1 More about data types

2.1.1 Database size info.

In the above table L means the actual length of a instance and M the maximum length.
So L+1 for "abcd" means 5 bytes in the database.

If you use any data type with an L in the length field you will get a variable length
record format.

2.1.2 The numeric types

All integer types can have an optional argument unsigned. This can be used when you
only want to allow positive numbers in the column or you need a little bigger
numerical range for the column.

Also for all integer columns, the optional argument ZEROFILL means that the column
will be padded with zeroes up to the maximum length.

Max display size and decimals are for formatting and calculation of maximum column
width.

When storing a value in an integer that is outside its range, MySQL stores the
maximum (or minimum) possible value. When doing an ALTER TABLE or LOAD
DATA INFILE one gets these conversions as 'warnings'. We have on the TODO to fix
INSERT and UPDATE so they can return warnings, but this is scheduled for the next
protocol change.

For example when storing -999999999999999 into an int column the value ends up as -
2147483648. And 9999999999999999 ends up as 2147483647.

And if the int is unsigned the stored values above becomes 0 and 4294967296.

The same rules go for all other integer types.

When returning data for an int(4) column that exceeds the allocated space, MySQL will
return 9.99. If the operation is an UPDATE a warning will be issued.

Note that a type like decimal(4,2) means maximum 4 characters with two decimal
points. That gives a range between -.99 -> 9.99.

To avoid some rounding problems, MySQL always rounds everything that it stores in
any floating point column according to the number of decimals. This means that 2.333
stored into float(8,2) is stored as 2.33.

2.1.3 TIMESTAMP type

Has a range of 1 Dec 1970 time 0.00 to sometime in the year 2106 and a resolution of
one second. A TIMESTAMP column will automatically be updated on INSERT and
UPDATE statements if set to NULL or if the column is not updated in the statement.
Can be (part of) an index. Note that if you have many timestamp columns in a row,
then only the first timestamp column will be automatically updated. Any timestamp
column will be set to the current time if set to NULL. Depending on the display size
one gets one of the following formats: "YYYY-MM-DD HH:MM:SS", "YY-MM-DD
HH:MM:SS", "YYYY-MM-DD" or "YY-MM-DD".

2.1.4 TEXT and BLOB types

These are objects that can have a variable length without upper limit. All TEXT and
BLOB objects are stored with their length (saved in 1 to 4 bytes depending on the type
of object). The maximum TEXT and BLOB length you can use is dependent on available
memory and client buffers. The only differences between TEXT and BLOB is that TEXT

is sorted and compared case insensitively while BLOB is compared case sensitively (by
character values). TEXT and BLOB objects CANNOT be an index.

A BLOB is a binary large object which can hold any amount of data. There are 4 kinds
of blobs See section 2.0 Column types.. Normally one can regard a BLOB as a
VARCHAR without a specified limit.

TEXT is a BLOB that is sorted and compared case insensitively.

A BLOB/TEXT column may not be bigger that the message buffer. Note that you have
to change the message buffer on both the server and the client.

MyODBC defines BLOBs as LONGVARBINARY and TEXTs as LONGVARCHAR.

Restrictions for BLOB and TEXT columns:

1. A BLOB or TEXT cannot be an index or a part of an index
2. When one sorts or groups a BLOB or TEXT, only the first max_sort_length

(default 1024) of the blob is used.

This value can be changed by the -O option when starting the mysqld daemon.
One can group on an expression involving a BLOB/ TEXT:

SELECT id,SUBSTR(blob,1,100) GROUP BY 2
3. There is no end space truncation for BLOB and TEXT as there is for CHAR and

VARCHAR.

2.1.5 ENUM type

A string object that can have only one of a set of allowed values. The value to be stored
may be given case independently. If one tries to store a non-existing value, "" is stored.
If used in a number context this object returns/stores the value index. If there is less
than 255 possible values this object occupies 1 byte, else two bytes (with a maximum of
65535 different values). Note that if an integer is put in the ENUM you get the
corresponding string with the first counting as number 1. (0 is reserved for wrong
enum values). Sorting on ENUM types are done according to the order of the strings in
the enum. If declared NOT NULL the default value is the first value, else the default
value is NULL.

For example the column test ENUM("one","two", "three") can have any of these values:

NULL
"one"
"two"
"three"

2.1.6 SET type

A string object that can have one or many values from a set of allowed values. Each
value is separated by a ','. If used in a number context this object returns/stores the bit
positions of the used values. This object occupies (number_of_different_values-1)/8+1
bytes, rounded up to 1,2,3,4 or 8. One can't have more than 64 different values. Note
that if an integer is put in the SET you get the corresponding string with the first bit
corresponding to the first string. Sorting on SET types are done numerically.

For example the column test SET("one","two") NOT NULL can have any of these
values:

""
"one"
"two"
"one,two"

Normally on SELECT on a SET column with LIKE or FIND_IN_SET():

SELECT * from banner where banner_group LIKE '%value%';
SELECT * from banner where FIND_IN_SET('value',banner_group)>0;

But the following will also work:

SELECT * from banner where banner_group = 'v1,v2'; ;Exact match
SELECT * from banner where banner_group & 1; ;Is in first group

2.2 Choosing the right type for a column.

Try to use the most precise type in all cases. For example for an integer between 1-
99999 an unsigned mediumint is the best type.

A common problem is representing monetary values accurately. In MySQL you should
use the DECIMAL type. This is stored as a string so no loss of accuracy should occur. If
accuracy is not to too important the DOUBLE type may also be good enough.

For high precision you can always convert to a fixed point type stored in a BITINT.
This allows you to do all calculations with integers and only convert the result back to
floating point.

2.3 Column indexes

You can have indexes on all MySQL columns except BLOB and TEXT types. Using
indexes on the relevant columns is the best way to improve the performance of selects.

For CHAR and VARCHAR columns you can have an index on a prefix. The example
below shows how to create an index for the first 10 characters of a column. This is much
faster and requires less disk space than having an index on the whole column.

CREATE TABLE test (name CHAR(200) NOT NULL, KEY index_name (name(10));

2.4 Multiple column indexes

MySQL can have one index on parts of different columns.

A multiple-column index can be considered a sorted array where the columns are
concatenated. This makes for fast queries where the first column in the index is a
known quantity and the other columns are not.

Suppose that you have a table:

CREATE TABLE test (
id INT NOT NULL,
last_name CHAR(30) NOT NULL,
first_name CHAR(30) NOT NULL,
PRIMARY KEY (id),
INDEX name (last_name,first_name));

Then the index name is an index over last_name and first_name.

The name index will be used in the following queries:

SELECT * FROM test WHERE last_name="Widenius";

SELECT * FROM test WHERE last_name="Widenius" AND first_name="Michael";

SELECT * FROM test WHERE last_name="Widenius" AND
 (first_name="Michael" OR first_name="Monty");

SELECT * FROM test WHERE last_name="Widenius" and
 first_name >="M" and first_name < "N";

The name index will NOT be used in the following queries:

SELECT * FROM test WHERE first_name="Michael";

SELECT * FROM test WHERE last_name="Widenius" or first_name="Michael";

2.5 Type mapping to ease moving table definitions between different databases
engines

To support easier use of code from different SQL vendors, MySQL does supports the
following mappings:

binary(num) char(num) binary
char varying varchar
float4 float
float8 double
int1 tinyint
int2 smallint
int3 mediumint
int4 int
int8 bigint
long varbinary blob
long varchar text
middleint mediumint
varbinary(num) varchar(num) binary

3.0 Commands and Syntax

3.1 Create database syntax.

CREATE DATABASE database_name

Creates a database with the given name. The name can only contain letters, numbers or
the '_' character and must start with a letter or a _. The maximum length of a database
name is 64 characters. All databases in MySQL are directories, so a CREATE
DATABASE only creates a directory in the MySQL database directory. You can also
create databases with mysqladmin.

3.2 Drop database syntax.

DROP DATABASE [IF EXISTS] database_name

Drop all tables in the database and deleted the database. You have to be VERY careful
with this command! DROP DATABASE returns how many files was removed from the
directory. Normally this is number of tables*3. You can also drop databases with
mysqladmin. In MySQL 3.22 one can use the new keywords IF EXISTS to not get an
error for a database that doesn't exits.

3.3 CREATE TABLE syntax.

CREATE TABLE table_name (create_definition,...)

create_definition:
 column_name type [NOT NULL | NULL] [DEFAULT
default_value][AUTO_INCREMENT]
 [PRIMARY KEY] [reference_definition]
 or PRIMARY KEY (index_column_name,...)
 or KEY [index_name] KEY(index_column_name,...)
 or INDEX [index_name] (index_column_name,...)
 or UNIQUE [index_name] (index_column_name,...)
 or FOREIGN KEY index_name (index_column_name,...) [reference_definition]
 or CHECK (expr)

type:
 TINYINT[(length)] [UNSIGNED] [ZEROFILL]
 or SMALLINT[(length)] [UNSIGNED] [ZEROFILL]
 or MEDIUMINT[(length)] [UNSIGNED] [ZEROFILL]
 or INT[(length)] [UNSIGNED] [ZEROFILL]
 or INTEGER[(length)] [UNSIGNED] [ZEROFILL]
 or BIGINT[(length)] [UNSIGNED] [ZEROFILL]
 or REAL[(length,decimals)] [UNSIGNED] [ZEROFILL]
 or DOUBLE[(length,decimals)] [UNSIGNED] [ZEROFILL]
 or FLOAT[(length,decimals)] [UNSIGNED] [ZEROFILL]
 or DECIMAL[(length,decimals)] [UNSIGNED] [ZEROFILL]
 or NUMERIC[(length,decimals)] [UNSIGNED] [ZEROFILL]
 or CHAR(length) [BINARY],
 or VARCHAR(length) [BINARY],
 or DATE
 or TIME
 or TIMESTAMP
 or DATETIME
 or TINYBLOB
 or BLOB
 or MEDIUMBLOB
 or LONGBLOB
 or TINYTEXT
 or TEXT
 or MEDIUMTEXT
 or ENUM(value1,value2,value3...)
 or SET(value1,value2,value3...)

index_column_name:
 column_name [(length)]

reference_definition:
 REFERENCES table_name [(index_column_name,...)]
 [MATCH FULL | MATCH PARTIAL]
 [ON DELETE reference_option]
 [ON UPDATE reference_option]

reference_option:
 RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT

See section 2.0 Column types.

The FOREIGN KEY, CHECK and REFERENCE syntax are only for compatibility. (To
make it easier to port code from other SQL servers and run applications that create
tables with references). They don't actually do anything.

If a column doesn't have a DEFAULT value and is not declared as NOT NULL, the
default value is NULL.

If a column doesn't have a DEFAULT value and is declared as NOT NULL, MySQL
will automatically assign a default value for the field.

ZEROFILL means that number is pre-zeroed to maximal length. With INT(5)
ZEROFILL a value of 5 is retrieved as 00005.

BINARY means that the column will be compared case sensitive. The default is that all
strings are compared case insensitive according to ISO-8859-1 Latin1. BINARY is
'sticky' which means that if a column marked BINARY is used in a expression, the
whole expression is compared BINARY.

KEY is a synonym for INDEX.

UNIQUE is in MySQL a key that can only have distinct values. You will get an error if
you try add a new row with a key that matches an old row.

PRIMARY KEY is a unique KEY. One can only have one PRIMARY KEY in a table. If
one doesn't assign a name to an index, the index will get the same name as the first
key_column with an optional _# to make it unique.

Index columns and timestamp columns can't be NULL. For these columns the NULL
attribute is silently removed.

With column_name(length) syntax one can specify an index which is only a part of a
string column. This can make the index file much smaller.

A number column may have the additional attribute AUTO_INCREMENT to
automatically get the largest value+1 for each insert where column value is NULL or 0.

One can insert NULL for timestamp and auto_increment columns. This results in the
current time / the next number.

Blob columns can't be indexes. When one groups on a blob only the first
'max_sort_length' bytes are used.

Limitations of BLOB and TEXT types.

Deleted records are in a linked list and subsequent inserts will reuse old positions. To
get smaller files one can use the isamchk utility to reorganize tables.

Each null column takes one bit extra, rounded up to the nearest byte.

The maximum record length can be calculated as follows: 1+ sum_of_column_lengths +
null_columns/8 + number of variable length columns.

In some cases an attribute may silently change after creation: VARCHAR columns with
a length of one or two are changed to CHAR. When using one VARCHAR column all
CHAR columns longer than 3 are changed to VARCHAR's. This doesn't affect the usage
of the column in any way; In MySQL VARCHAR is just a different way to store
characters. MySQL does the conversion because it will save space and make the table
faster. See when to use VARCHAR/CHAR?

On INSERT/UPDATE all strings (CHAR and VARCHAR) are silently
chopped/padded to the maximal length given by CREATE. All end spaces are also
automatically removed. For example VARCHAR(10) means that the column can
contain strings with a length up to 10 characters.

Something/0 gives a NULL value.

The regular expression function (REGEXP and RLIKE) uses ISO8859-1 (Latin1) when
deciding the type of a character.

3.4 ALTER TABLE syntax

ALTER [IGNORE] TABLE table_name alter_spec [, alter_spec ...]

alter_specification:
 ADD [COLUMN] create_definition [AFTER column_namn | FIRST]
or CHANGE [COLUMN] old_column_name create_definition
or ALTER [COLUMN] column_name { SET DEFAULT literal | DROP DEFAULT }
or ADD INDEX [index_name] (index_column_name,...)
or ADD UNIQUE [index_name] (index_column_name,...)
or DROP [COLUMN] column_name
or DROP PRIMARY KEY
or DROP INDEX key_name
or RENAME [AS] new_table_name

ALTER TABLE works by creating a temporary table and copying all information to it
and then the old table is deleted and the new one is renamed. This is done in such a

way that all updates are automatically redirect to the new table without any failed
updates. While the ALTER TABLE is working, the old table is readable for other
clients. Table updates/writes to the table are stalled and only executed after the new
table is ready.

If IGNORE isn't specified then the copy will be aborted and rolled back if there exists
any duplicated unique keys in the new table. In case of duplicates the first found row
will be used. This is a MySQL extension.

The CHANGE column_name, DROP column_name and DROP INDEX are MySQL
extensions to ANSI SQL92.

The optional word COLUMN is a pure noise word and can be omitted.

The ADD and CHANGE takes the same create_definition as CREATE TABLE. See
section 3.3 CREATE TABLE syntax. In MySQL 3.22 you can use ADD ... AFTER
column_name or FIRST to add a column at some specific location in your table. The
default is the add the column last.

ALTER COLUMN sets a new default value or removes the old default value for a
column.

DROP INDEX removes an index. This is a MySQL extension.

The FOREIGN KEY syntax in MySQL exists only for compatibility. If one drops a
column_name which is part of some index, this index part is removed. If all index parts
are removed then the index is removed.

DROP PRIMARY KEY drops index named PRIMARY or if no such index exists, it
drops the first UNIQUE index in the table.

CHANGE tries to convert data to the new format as good as possible. With
mysql_info(MYSQL*) one can retrieve how many records were copied and how many
records were deleted because of multiple indexes.

To use ALTER TABLE one needs select, insert, delete, update, create and drop
privileges on the table. If one uses ALTER TABLE table_name RENAME AS
new_name without any other options, MySQL will only do a fast rename of table table.

Some examples of using ALTER TABLE:

CREATE TABLE t1 (a INTEGER,b CHAR(10));
INSERT INTO t1 VALUES(1,"testing");
ALTER TABLE t1 RENAME t2;
ALTER TABLE t2 CHANGE a a TINYINT NOT NULL, CHANGE b c CHAR(20);
ALTER TABLE t2 ADD d TIMESTAMP;
ALTER TABLE t2 ADD INDEX (d), ADD PRIMARY KEY (a);
ALTER TABLE t2 DROP COLUMN c;
ALTER TABLE t2 ADD c INT UNSIGNED NOT NULL AUTO_INCREMENT, ADD
INDEX (c);
DROP TABLE t2;

3.5 DROP TABLE syntax.

DROP TABLE [IF EXISTS] table_name [, table_name...]

Removes one or more tables. All the data and the definition are removed so take it easy
with this command!

In MySQL 3.22 one can use the new keywords IF EXISTS to not get an error for tables
that doesn't exits.

3.6 DELETE syntax.

DELETE FROM table_name WHERE where_definition

Returns records affected.

If one does a delete without a WHERE clause then the table is recreated, which is much
faster than doing a delete for each row. In these cases, the command returns zero as
affected records. MySQL can't return the number of deleted row because the recreate is
done without opening the data files to make sure that one can recreate the table as long
as the table definition file table_name.frm is valid.

3.7 SELECT syntax

SELECT [STRAIGHT_JOIN] [DISTINCT | ALL] select_expression,... [INTO OUTFILE
'file_name' ...] [FROM table_references [WHERE
where_definition] [GROUP BY column,...] [HAVING where_definition] [

ORDER BY column [ASC | DESC] ,..] [LIMIT [offset,] rows]
[PROCEDURE procedure_name]]

All used keywords must come in exactly the above order. For example a HAVING
clause must come after any GROUP BY and before any ORDER BY clause.

Strings are automatically converted to numbers and numbers to strings when needed
(a-la Perl). If in a compare operation ((=, <>, <= ,<, >=, >)) either of the arguments are
numerical, the arguments are compared as numbers, else the arguments are compared
as strings. All string comparisons are by default done case-independent by ISO8859-1
(The Scandinavian letter set which also works excellently with English).

select 1 > '6x'; -> 0

select 7 > '6x'; -> 1

select 0 > 'x6'; -> 0

select 0 = 'x6'; -> 1

A column name does not need a table prefix if the given column name is unique.

A select expression may be given an alias which will be its column name and can be
used when sorting and grouping or in the HAVING clause.

 select concat(last_name,' ',first_name) as name from table order by name

Table_references is a list of tables to join. This may also contain LEFT OUTER JOIN
references. See section 3.8 Join syntax.

In LIKE expressions % and _ may be preceded with '\' to skip the wildcard meaning
and get a literal % or _.

A DATE is a string with one of the following syntaxes:
YYMMDD (Year is assumed to be 2000 if YY < 70.)
YYYYMMDD
YY.MM.DD Where '.' may be any non-numerical separator.
YYYY.MM.DD Where '.' may be any non-numerical separator.

IFNULL() and IF() return number or string value according to use.

ORDER and GROUP columns may be given as column names, column aliases or
column numbers in SELECT clauses.

The HAVING clause can take any column or alias in the select_expressions. It is
applied last, just before items are sent to the client, without any optimisation. Don't use
it for items that should be in the WHERE clause. You can't write (yet):

 SELECT user,MAX(salary) FROM users GROUP BY user HAVING max(salary)>10

Change it to:

 SELECT user,MAX(salary) AS sum FROM users GROUP BY user HAVING sum > 10

STRAIGHT_JOIN forces the optimizer to join the tables in the same order that the
tables are given in the FROM clause. One can use this to get a query to be done more
quickly if the optimizer joins the tables in non-optimal order. See section 3.14 EXPLAIN
syntax. Get information about a SELECT.

LIMIT takes one or two numerical arguments. If one argument, the argument indicates
the maximum number of rows in a result. If two arguments, the first argument says the
offset to the first row to return, the second is the maximum number of rows.

INTO OUTFILE 'filename' writes the given set to a file. The file can not already exist
from before. See section 3.11 LOAD DATA INFILE syntax.

3.8 Join syntax

MySQL supports the following JOIN syntaxes:

table_reference, table_reference
table_reference [CROSS] JOIN table_reference
table_reference STRAIGHT_JOIN table_reference
table_reference LEFT [OUTER] JOIN table_reference ON conditional-expr
table_reference LEFT [OUTER] JOIN table_reference USING (column-commalist)
table_reference NATURAL LEFT [OUTER] JOIN table_reference
 { oj table_reference LEFT OUTER JOIN table_reference ON conditional-expr }

The last version is ODBC syntax.

A table reference may be aliased with table_reference AS alias or table_reference alias.

, and JOIN are semantically identical. This does a full join between the used tables. One
normally specifies in the WHERE condition how the tables should be linked.

The ON conditional is any WHERE conditional. If there is no matching record for the
right table in a LEFT JOIN a row with all columns set to NULL will be used for the
right table.

The USING column-list is a list of fields that must exists in both tables. A LEFT JOIN B
USING (C1,C2,C3...) is defined to be semantically identical to using an ON expression
A.C1=B.C1 AND A.C2=B.C2 AND A.C3=B.C3... .

The NATURAL LEFT JOIN of two tables is defined to be semantically identical to a
USING with all column names that exist in both tables.

The last LEFT JOIN syntax exists only for compatibility with ODBC.

STRAIGHT_JOIN is identical as JOIN, except that the left table will always be read
before the right table. This can be used in the few cases when the join optimizer puts
the tables in the wrong order.

Some examples:

SELECT * from table1,table2 where table1.id=table2.id;
SELECT * from table1 LEFT JOIN table2 ON table1.id=table2.id;
SELECT * from table1 LEFT JOIN table2 USING (id);
SELECT table1.* from table1 LEFT JOIN table2 ON table1.id=table2.id WHERE
table2.id IS NULL;
SELECT * from table1 LEFT JOIN table2 ON table1.id=table2.id LEFT JOIN table3 ON

table3.id=table2.id;

The fourth example is noteworthy as it finds all rows in table1 that doesn't have an row
in table2.

3.9 INSERT syntax

 INSERT INTO table [(column_name,...)] VALUES (expression,...)
or INSERT INTO table [(column_name,...)] SELECT ...

An expression may use any previous column in column_name list (or table if no
column name list is given).

The following holds for a multi-row INSERT statement:

The query cannot contain an ORDER BY clause.
The target table of the INSERT statement cannot appear in the FROM clause of
the query.
If one uses INSERT INTO ... SELECT ... then one can get the following info string

with the C API function mysql_info(). Records: 100 Duplicates: 0
Warnings: 0 Duplicates are rows which couldn't be written because some
index would be duplicated. Warnings are columns which were set to
NULL, but have been declared NOT NULL. These will be set to their

default value. In this case it's also forbidden in ANSI SQL to SELECT
from the same table that you are inserting into. The problem that there
may be problems if the SELECT finds records that is inserted at the same
run. When using sub selects the situation could easily be very confusing!

If one sets a time stamp value to anything other than NULL, the time stamp
value will be copied to the result table.

Auto increment columns works as usual.

3.10 REPLACE syntax

 REPLACE INTO table [(column_name,...)] VALUES (expression,...)
or REPLACE INTO table [(column_name,...)] SELECT ...

This works exactly like INSERT, except that if there was some old record in the table
with the same unique index the old record or records will be deleted before this record
is inserted. See section 3.9 INSERT syntax.

3.11 LOAD DATA INFILE syntax

LOAD DATA INFILE 'text_file_name.text' [REPLACE | IGNORE] INTO TABLE
table_name [FIELDS [TERMINATED BY ','

[OPTIONALLY] ENCLOSED BY '"' ESCAPED BY '\\']]
[LINES TERMINATED BY '\n'] [(Field1, Field2...)]

This is used to read rows from a text file, which must be located on the server, at a very
high speed. The server-client protocol doesn't yet support files over a connection. If you
only have the file on the client, use rcp or ftp to copy it, possibly compressed, to the
server before using LOAD DATA INFILE. All paths to the text file are relative to the
database directory.

To write data to a text file, use the SELECT ... INTO OUTFILE 'interval.txt' fields
terminated by ',' enclosed by '"' escaped by '\\' lines terminated by '\n' FROM ...
syntax.

Normally you don't have to specify any of the text file type options. The default is a
compact text file with columns separated with tab characters and all rows end with a
newline. Tabs, newlines and \ inside fields are prefixed with a \. NULLs are read and
written as \N.

FIELDS TERMINATED BY has the default value of \t.

FIELDS [OPTIONALLY] ENCLOSED BY has the default value of ".

FIELDS ESCAPED BY has the default value of '\\'.

LINES TERMINATED BY has the default value of '\n'.

FIELDS TERMINATED BY and LINES TERMINATED BY may be more than one
character.

If LINES TERMINATED BY is an empty string and FIELDS TERMINATED BY is non-
empty then lines are also terminated with FIELDS TERMINATED BY.

If FIELDS TERMINATED BY and FIELDS ENCLOSED BY both are empty strings (")
then this gives a fixed row format ("not delimited" import format). With a fixed row
size NULL values are output as a blank string. If you specify OPTIONALLY in
ENCLOSED BY, then only strings are enclosed in ENCLOSED BY by the SELECT ...
INTO statement.

Duplicated ENCLOSED BY chars are removed from strings that start with ENCLOSED
BY. For example: With ENCLOSED BY '"':

"The ""BIG"" boss" -> The "BIG" boss
The "BIG" boss -> The "BIG" boss

If ESCAPED BY is not empty then the following characters will be prefixed with the
escape character: ESCAPED BY, ASCII 0, and the first character in any of FIELDS
TERMINATED BY, FIELDS ENCLOSED BY and LINES TERMINATED BY.

If FIELDS ENCLOSED BY is not empty then NULL is read as a NULL value. If FIELDS
ESCAPED BY is not empty then \N is also read as a NULL value.

If REPLACE is used, then the new row will replace all rows which have the same
unique index. If IGNORE is used, the row will then be skipped if a record already
exists with an identical unique key. If none of the above options are used an error will
be issued. The rest of the text file will be ignored if one gets a duplicate index error.

Some possible cases that are not supported by LOAD DATA:

Fixed size rows (FIELDS TERMINATED BY and FIELDS ENCLOSED BY both
are empty) and BLOB columns.

If some of the separators are a prefix of another.
FIELDS ESCAPED BY is empty and the data contains LINES TERMINATED BY

or FIELDS ENCLOSED BY followed by
FIELDS TERMINATED BY.

All rows are read into the table. If a row has too few columns, the rest of the columns
are set to default values. TIMESTAMP columns are only set to the current time if there
is a NULL value for the column or if the TIMESTAMP column is left out from the field
list when the field list is used (the last case only holds for the first TIMESTAMP
column).

For security reasons the text file must either reside in the database directory or be
readable by all. Each user that wants to use LOAD DATA INFILE must also have 'Y' in
the 'File_priv' column in the user privilege table!

Because LOAD DATA INFILE regards all input as strings you can't use number values
for enum or set columns as you can with INSERT statements. All enum and set must be
given as strings!

For more information about the escaped syntax, See section 1.0 Literals. How do you
write strings and numbers?.

When the LOAD DATA query is done, one can get the following info string with the C
API function mysql_info().

Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

Warnings are incremented for each column which can't be stored without loss of
precision, for each column which didn't get a value from the read text line (happens if
the line is too short) and for each line which has more data than can fit into the given
columns. A warning is also given for any time, date, timestamp or datetime column
that is set to 0.

An example that loads all columns:

LOAD DATA INFILE 'persondata.text' INTO TABLE persondata;

3.12 UPDATE syntax

UPDATE table SET column=expression,... WHERE where_definition

All updates are done from left to right. If one accesses a column in the expression,
update will then use the current value (a given value or the default value) of the
column.

UPDATE persondata SET count=count+1

A UPDATE statements returns how many rows was actually changed. In MySQL 3.22
mysql_info() returns the number of rows that was matched and updated and how
warnings one got during the update.

3.13 SHOW syntax. Get information about tables, columns...

 SHOW DATABASES [LIKE wild]
or SHOW TABLES [FROM database] [LIKE wild]
or SHOW COLUMNS FROM table [FROM database] [LIKE wild]
or SHOW INDEX FROM table [FROM database]
or SHOW STATUS
or SHOW VARIABLES [LIKE wild]

Gives information about databases, tables or columns. If the LIKE wild part is used the
wild string is a normal SQL wildcard (with % and _). FIELDS may be used as an alias
for COLUMNS and KEYS may be used as an alias for INDEXES.

STATUS gives status information from the server like mysqladmin status). The output
may differ from the following:

Uptime Running_threads Questions Reloads Open_tables
119 1 4 1 3

VARIABLES shows the values of the some of MySQL system variables. Most of these
variables can be changed by different options to mysqld!

3.14 EXPLAIN syntax. Get information about a SELECT.

 EXPLAIN SELECT select_options

Gives information about how and in which order tables are joined. With the help of
EXPLAIN one can see when one has to add more indexes to tables to get a faster select
that uses indexes to find the records. You can also see if the optimizer joins the tables in
an optimal order. One can force the optimizer to use a specific join order with the
STRAIGHT_JOIN option to select.

The different join types are:

system The table has only one record (= system table)

const The table has at most one matching record which will be read at the start of
the query. All columns in this table will be regarded as constants by the rest
of the optimizer.

eq_ref One record will be read from this table for each combination of the previous
tables.

ref All rows with matching indexes will be read from this table for each
combination of the previous tables.

range Only rows that is in a given index range will be retrieved trough an index.
The extra column will tell which index is used.

all A full table scan will be done for each combination of the previous tables.

Here is a example of a join which is optimised with the help of EXPLAIN.

EXPLAIN SELECT tt.TicketNumber, tt.TimeIn,
 tt.ProjectReference, tt.EstimatedShipDate,
 tt.ActualShipDate, tt.ClientID,
 tt.ServiceCodes, tt.RepetitiveID,
 tt.CurrentProcess, tt.CurrentDPPerson,
 tt.RecordVolume, tt.DPPrinted, et.COUNTRY,
 et_1.COUNTRY, do.CUSTNAME
 FROM tt, et, et AS et_1,
 do
 WHERE tt.SubmitTime Is Null and tt.ActualPC =
 et.EMPLOYID and tt.AssignedPC =
 et_1.EMPLOYID and tt.ClientID =
 do.CUSTNMBR;

The EXPLAIN returns the following:

table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74
do ALL PRIMARY NULL NULL NULL 2135
et_1 ALL PRIMARY NULL NULL NULL 74
tt ALL AssignedPC,ClientID,ActualPC NULL NULL NULL 3872
 range checked for each record (key map: 35)

In this case MySQL is doing a full join for all tables! This will take quite a long time as
the product of the number of rows in each table must be examined! So if all tables had
1000 records MySQL has to look at 1000^4 = 1000000000000 rows. If the tables are
bigger you can only imagine how long it would take...

In this case the first error is that MySQL can't yet use efficiently indexes on columns
that are declared differently: (varchar() and char() are not different in this context)

In this case tt.ActualPC is char(10) and et.EMPLOYID is char(15).

Fix:

mysql> alter table tt change ActualPC ActualPC varchar(15);

And the above explanation shows:

table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC,ClientID,ActualPC NULL NULL NULL 3872
 where used
do ALL PRIMARY NULL NULL NULL 2135
 range checked for each record (key map: 1)
et_1 ALL PRIMARY NULL NULL NULL 74
 range checked for each record (key map: 1)
et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1

Which is not perfect but much better. This version is executed in a couple of seconds.

After

mysql> alter table tt change AssignedPC AssignedPC varchar(15),
 change ClientID Clientid varchar(15);

You get the following from EXPLAIN:

table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74
tt ref AssignedPC,ClientID,ActualPC ActualPC 15
 et.EMPLOYID 52 where used
et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.Clientid 1

Which is 'almost' as good as it can get. The problem is that MySQL assumes that
tt.AcutalPC is evenly
distributed which isn't the case in the tt.

Fortunately it is easy to tell MySQL about this:

shell> isamchk --analyze PATH_TO_MYSQL_DATABASE/tt
shell> mysqladmin refresh

And now the join is 'perfect':

table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC,ClientID,ActualPC NULL NULL NULL
 3872 where used
et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1
et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.Clientid 1

3.15 DESCRIBE syntax. Get information about columns.

(DESCRIBE | DESC) table [column]

Gives information about columns. This command is for Oracle compatibility. See
section 3.13 SHOW syntax.

Get information about tables, columns.... Column may be a column name or a string.
Strings may contain wild cards.

3.16 LOCK TABLES syntax

LOCK TABLES table_name [AS alias] READ|WRITE [, table_name READ|WRITE]
...
UNLOCK TABLES

Locks tables for this thread. If a thread has a READ lock on a table, the thread (and all
other threads) can only read from the table. If a thread has a WRITE lock one a table,
then only this thread can READ and WRITE on the table. All threads waits until they
get all locks (no timeouts).

When one uses LOCK TABLES one must lock all tables one is going to use! This policy
ensures that table locking is deadlock free.

LOCK TABLES trans READ, customer AS c WRITE
SELECT SUM(value) FROM trans WHERE customer_id= #some_id#;
UPDATE customer SET total_value=#value_from_last_statement# WHERE
customer_id=#some_id#;
UNLOCK TABLES

All tables are automatically unlocked when one issues another LOCK TABLES or if the
connection to the server is closed.

Normally you don't have to lock tables. There is a couple of cases when you would like
to lock tables anyway:

If you are going to run many operations on a bunch of tables, its much faster to
lock the tables you are going to use. The downside is of course that no
other thread can update a READ locked table and no other thread can
read a WRITE locked table.

As MySQL doesn't support a transaction environment, you must use lock tables
if you want to ensure that no other thread comes between a read and a
update. For example the previous example requires

LOCK TABLES to be safe! If one didn't use LOCK TABLES there is a change that
someone inserts a new 'trans' row between the SELECT and UPDATE
statements.

By using incremental updates (UPDATE customer set value=value+new_value)
or the LAST_INSERT_ID() function you can avoid using LOCK TABLES
in many cases.

You can also solve some cases by using user level locks: GET_LOCK() and
RELEASE_LOCK(). These locks are saved in a hash table in the server and
implemented with pthread_mutex for high speed. See section 7.3.11 Miscellaneous
functions.

3.17 SET OPTION syntax.

SET [OPTION] SQL_VALUE_OPTION=value, ...

The used options remain in effect for the whole current session.

The different options are:

SQL_SELECT_LIMIT=value

The maximum number of records to return in any select. If a select has a limit clause it
overrides this statement. The default value for a new connection is 'unlimited'.

SQL_BIG_TABLES= 0 | 1

If set to 1 then all temporary tables are stored on disk instead of in memory. This will
be a little slower, but one will not get the error The table ### is full for big selects that
require a big temporary table. The default value for a new connection is 0 (use in
memory temporary tables).

SQL_BIG_SELECTS= 0 | 1

If set to 1 then MySQL will abort if a select is attempted that will probably take a very
long time. This is useful when an erroneous WHERE statement has been issued. A big
query is defined as a SELECT that will probably have to examine more than
max_join_size rows. The default value for a new connection is 0 (which will allow all
SELECT's).

CHARACTER SET character_set_name | DEFAULT

This maps all strings from and to the client with the given mapping. Currently the only
option for character_set_name is cp1251_koi8, but one can easily add new mappings by
editing the file mysql_source_directory/sql/convert.cc. One can restore the default
mapping by using DEFAULT as the character_set_name.

SQL_LOG_OFF= 0 | 1

If set to 1 then no logging will done to the standard log for this client if the client has
process list privileges. This doesn't affect the update log!

TIMESTAMP= timestamp_value | DEFAULT

Set the time for this client. This is used to get the original timestamp if one uses the
update log to restore rows.

LAST_INSERT_ID= #

Set the value to be returned from LAST_INSERT_ID(). This is stored in the update log
when one uses LAST_INSERT_ID() in a command that updates a table.

3.18 CREATE INDEX syntax (Compatibility function).

CREATE [UNIQUE] INDEX index_name ON table_name (column_name[(length]),...)

This function doesn't do anything in MySQL version before version 3.22. This is
mapped to a ALTER TABLE call to create indexes. See section 3.4 ALTER TABLE
syntax

Normally one creates all INDEX at the same time with CREATE TABLE See section 3.3
CREATE TABLE syntax.

(col1, col2) creates a multiple index over the two columns. The index can be seen as a
concatenation of the given columns. If you in CREATE TABLE use INDEX(col1),
INDEX(col2) instead of INDEX(col1,col2) you get two separate indexes instead of one
multiple index.

SELECT * FROM table WHERE col1=# AND col2=#

In a case of an index on (col1,col2) the right row(s) can be fetched directly. In a case of
(col1), (col2) the optimizer decides which index will find fewer rows and this index will
be used to fetch the rows.

If the table has an index (col1,col2,col3...) the prefix of this can be used by the optimizer
to find the rows. This means that the above gives you search capabilities on: (col1) and
(col1,col2) and (col1,col2,col3)...

MySQL can't use a portion of an index to locate rows through an index.

With the definition (col1,col2,col3):

SELECT * FROM table WHERE col1=#
SELECT * FROM table WHERE col2=#
SELECT * FROM table WHERE col2=# and col3=#

only the first query will use indexes.

MySQL will also use indexes if the LIKE argument is a constant string that doesn't start
with a wild character:

The following will use indexes:

SELECT * from table WHERE key_column like "Patrick%";
SELECT * from table WHERE key_column like "Pat%_ck%";

In the above cases only rows with Patrick <= key_column < Patricl and Pat <=
key_column < Pau will be considered.

The following selects will not use indexes:

SELECT * from table WHERE key_column like "%Patrick%";
SELECT * from table WHERE key_column like other_column;

With column_name(length) syntax one can specify an index which is only a part of a
string column. This can make the index file much smaller.

CREATE INDEX part_of_name ON customer (name(10))

As it's quite normal that most names differs in the first 10 characters, the above
definition should not slow down searches on names, but it could save a lot of disk and
even speed up inserts!

3.19 DROP INDEX syntax (Compatibility function).

DROP INDEX index_name

This function doesn't do anything in MySQL before version 3.22. This is mapped to a
ALTER TABLE call to drop the INDEX or UNIQUE definition. See section 3.4 ALTER
TABLE syntax.

3.20 Comment syntax

MySQL supports the # to end of line and /* multiple line */ comment styles.

select 1+1; # This comment is to the end of line
select 1 /* in-line-comment */ + 1;
select 1+/* This will be ignored
*/1;

MySQL doesn't support the -- ANSI SQL style comments.

3.21 CREATE FUNCTION syntax

CREATE FUNCTION <function_name> RETURNS [string|real|integer]
 SONAME <name_of_shared_library>

DROP FUNCTION <function_name>

User definable functions (UDF) is way to extend MySQL with new functions that works
as native MySQL functions like ABS() and concat(). UDF's are written in C or C++ and
require that dynamic loading works on the operating system. The source distribution
includes the file `udf_example.cc' that defines 5 new functions.

The functions name, type and shared library is saved in the new system table 'func' in
the 'mysql' database.

To be able to create new functions one must have write privilege for the database
'mysql'. If one starts MySQL with --skip-grant-tables, then UDF initialization will also
be skipped.

Each defined function may have a xxxx_init function and a xxxx_deinit function. The
init function should alloc memory for the function and tell the main function about the
max length of the result (for string functions), number of decimals (for double
functions) and if the result may be a null value.

If a function sets the 'error' argument to 1 the function will not be called anymore and
mysqld will return NULL for all calls to this instanse of the function.

All strings arguments to functions are given as string pointer + length to allow
handling of binary data. Remember that all functions must be thread safe. This means
that one is not allowed to alloc any global or static variables that changes! If one needs
memory one should alloc this in the init function and free this on the __deinit function.

A dynamically loadable file should be compiled sharable (something like: gcc -shared -
o udf_example.so myfunc.cc). You can easily get all switches right by doing: cd sql ;
make udf_example.o Take the compile line that make writes, remove the '-c' near the
end of the line and add -o udf_example.so to the end of the compile line. The
resulting library (udf_example.so) should be copied to some dir searched by ld, for
example /usr/lib.

Some notes about the example functions:

Function metaphon returns a metaphon string of the string argument. This is
something like a soundex string, but it's more tuned for English.

Function myfunc_double returns summary of codes of all letters of arguments
divided by summary length of all its arguments.

Function myfunc_int returns summary length of all its arguments.
Function lookup returns the IP number for an hostname.
Function reverse_lookup returns the hostname for a IP number. The function

may be called with a string "xxx.xxx.xxx.xxx" or four numbers.

After the library is installed one must notify mysqld about the new functions with the
commands:

CREATE FUNCTION metaphon RETURNS STRING SONAME "udf_example.so";
CREATE FUNCTION myfunc_double RETURNS REAL SONAME "udf_example.so";
CREATE FUNCTION myfunc_int RETURNS INTEGER SONAME "udf_example.so";
CREATE FUNCTION lookup RETURNS STRING SONAME "udf_example.so";
CREATE FUNCTION reverse_lookup RETURNS STRING SONAME "udf_example.so";

Functions should be created only once. The functions can be deleted by:

DROP FUNCTION metaphon;
DROP FUNCTION myfunc_double;
DROP FUNCTION myfunc_int;
DROP FUNCTION lookup;
DROP FUNCTION reverse_lookup;

The CREATE FUNCTION and DROP FUNCTION update the func table. All active
function will be reloaded on everyrestart of server (if --skip-grant-tables is not given).

3.22 Is MySQL picky about reserved words?

A common problem stems from trying to create a table with column names timestamp
or group, the names of datatypes and functions built into MySQL. You're allowed to do
it (for example, ABS is an allowed column name), but whitespace is not allowed
between a function name and the '(' when using the functions whose names are also
column names.

The following are explictly reserved words in MySQL. Most of them (for example)
group, are forbidden by ANSI SQL92 as column and/or table names. A few are
because MySQL needs them and is (currently) using a yacc parser:

action add all alter
and as asc auto_increment
between bigint bit binary
blob both by cascade
char character change check
column columns create data
database databases date datetime
day day_hour day_minute day_second
dayofweek dec decimal default
delete desc describe distinct
double drop escaped enclosed
enum explain fields float
float4 float8 foreign from
for full grant group
having hour hour_minute hour_second
ignore in index infile
insert int integer interval
int1 int2 int3 int4
int8 into is join
key keys leading left
like lines limit lock
load long longblob longtext
match mediumblob mediumtext mediumint
middleint minute minute_second month
natural numeric no not
null on option optionally
or order outer outfile
partial precision primary procedure
privileges read real references
rename regexp `repeat replace
restrict rlike select set
show smallint sql_big_tables sql_big_selects
sql_select_limit sql_log_off straight_join starting
table tables terminated text
time timestamp tinyblob tinytext
tinyint trailing to use
using unique unlock unsigned
update usage values varchar
varying varbinary with write
where year year_month zerofill

The following symbols (from the table above) are disallowed by ANSI SQL but allowed
by MySQL as column/table names. This is because some of these names are very
natural names and a lot of people have already used them.

 ACTION
 BIT
 DATE
 ENUM
 NO
 TEXT
 TIME
 TIMESTAMP

4.0 Functions for use in SELECT and WHERE clauses

A select_expression or where_definition can consist of any expression using the
following functions:

In the examples below the output of the mysql program has been shortened. So this:

mysql> select mod(29,9);
1 rows in set (0.00 sec)

+-----------+
| mod(29,9) |
+-----------+
| 2 |
+-----------+

Has been converted to:

mysql> select mod(29,9); -> 2

4.1 Grouping functions.

() Parenthesis. Force order of evaluation in a expression.

 mysql> select 1+2*3; -> 7
 mysql> select (1+2)*3; -> 9

4.2 Normal arithmetic operations.

+ Addition
- Subtraction.
* Multiplication
/ Division. A division by zero results in a NULL.

 mysql> select 102/(1-1); -> NULL

4.3 Bit functions.

These have a range of maximum 64 bits because MySQL uses bigint (64 bit) arithmetic.

| Bitwise OR.

 mysql> select 29 | 15; -> 31

& Bitwise and.

 mysql> select 29 & 15; -> 13

<< Shift a longlong number to the right

 mysql > select 1 << 2 -> 4

<< Shift a longlong number to the left

 mysql > select 4 >> 2 -> 1

BIT_COUNT()
 Number of set bits in an argument.

 mysql> select bit_count(29); -> 4

4.4 Logical operations.

All logical function return 1 (TRUE) or 0 (FALSE).

NOT
! Logical NOT. Return 1 if argument is 0 else return 0.

 mysql> select NOT 1; -> 0
 mysql> select NOT NULL; -> NULL
 mysql> select ! (1+1); -> 0
 mysql> select ! 1+1; -> 1

OR
|| Logical OR. Return 1 if any of the arguments are non 0 and not NULL.

 mysql> select 1 || 0; -> 1
 mysql> select 0 || 0; -> 0
 mysql> select 1 || NULL; -> 1

AND
&& Logical AND. Return 1 if all of the arguments are non 0 or NULL

 mysql> select 1 && NULL; -> 0
 mysql> select 1 && 0; -> 0

4.5 Comparison operators.

Returns 1 (TRUE), 0 (FALSE) or NULL. These functions work for both numbers and
strings. MySQL uses the following rules to decide how the compare is done:

If both arguments to a compare operation are strings, compare as strings.
If both arguments are integers, compare as integers.
If one of the arguments is a TIMESTAMP or DATETIME column and the other

argument is a constant. In this case the constant is converted to a
timestamp before the comparasion. This is to be more ODBC friendly.

In all other cases compare as floating point numbers (real).

If one or both of the arguments are NULL the result of the comparison is NULL.

= Equal.

 mysql> select 1 = 0; -> 0
 mysql> select '0' = 0; -> 1
 mysql> select '0.0' = 0; -> 1
 mysql> select '0.01' = 0; -> 0
 mysql> select '.01' = 0.01; -> 1

<>
!= Not equal.

 mysql> select '.01' <> '0.01'; -> 1
 mysql> select .01 <> '0.01'; -> 0
 mysql> select 'zapp' <> 'zappp'; -> 1

<= Smaller than or equal.

 mysql> select 0.1 <= 2; -> 1

< Smaller than.

 mysql> select 2 <= 2; -> 1

>= Bigger than or equal.

 mysql> select 2 >= 2; -> 1

> Bigger than.

 mysql> select 2 > 2; -> 0

ISNULL(A)
 Returns 1 if A is NULL else 0.

 mysql> select isnull(1+1); -> 0
 mysql> select isnull(1/0); -> 1

A BETWEEN B AND C

A is bigger or equal as B and A is smaller or equal to C. Does the same thing as (A >= B
AND A <= C) if all arguments are of the same type. It's the first argument (A) that
decides how the comparison should be done! If A is a string expression, compare as
case insensitive strings. If A is a binary string, compare as binary strings. If A is an
integer expression compare as integers, else compare as reals.

 mysql> select 1 between 2 and 3; -> 0
 mysql> select 'b' between 'a' and 'c'; -> 1
 mysql> select 2 between 2 and '3'; -> 1
 mysql> select 2 between 2 and 'x-3'; -> 0

4.6 String comparison functions.

Normally if one expression that is compared is not case sensitive than the compare is
done case insensitively.

expr IN (value,...)

Returns 1 if expr is any of the values in the IN list, else it returns 0. If all values are
constants, then all values are evaluated according to the type of expr and sorted. The
search for the item is then done by using a binary search. This means IN is very quick
when used with constants in the IN part. If expr is a string expression then string
compare is done case sensitively if expr is case sensitive.

 mysql> select 2 in (0,3,5,'wefwf'); -> 0
 mysql> select 'wefwf' in (0,3,5,'wefwf'); -> 1

expr NOT IN (value,...)

Same as NOT (expr IN (value,...))

expr LIKE expr

SQL simple regular expression comparison. Returns 1 (TRUE) or 0 (FALSE). With LIKE
you have two wild characters.

 % Matches any number of characters, even zero characters.

 _ Matches exactly one character.

 \% Matches one %.

 _ Matches one _.

 mysql> select 'David!' like 'David_'; -> 1
 mysql> select 'David!' like 'David_'; -> 0
 mysql> select 'David_' like 'David_'; -> 1
 mysql> select 'David!' like '%D%v%'; -> 1
 mysql> select 10 like '1%'; -> 1

 LIKE is allowed on numerical expressions! (Extension)

expr NOT LIKE expr Same as NOT (expr LIKE expr).
expr REGEXP expr
expr RLIKE expr Checks string against extended regular expr. RLIKE is for

mSQL compatibility. NOTE: Because MySQL uses the C escape syntax
in strings (\n) You must double any '\' that you uses in your REGEXP
strings.

 mysql> select 'Monty!' regexp 'm%y%%'; -> 0
 mysql> select 'Monty!' regexp '.*'; -> 1
 mysql> select 'new*\n*line' regexp 'new*.*line'

 expr NOT REGEXP expr Same as NOT (expr REGEXP expr).
STRCMP() Returns 0 if the strings are the same. Otherwise return -1 if the

first argument is smaller according to the current sort-order, otherwise
return 1.

 mysql> select strcmp('text', 'text2'); -> -1
 mysql> select strcmp('text2', 'text'); -> 1
 mysql> select strcmp('text', 'text'); -> 0

4.7 Control flow functions.

IFNULL(A,B)

If A is not NULL it returns A, else B.

 mysql> select ifnull(1,0); -> 1
 mysql> select ifnull(0,10); -> 0
 mysql> select ifnull(1/0,10); -> 10

IF(A,B,C)

If A is true (A <> 0 and A <> NULL) then return B, else return C. A is evaluated as an
INTEGER, which means that if you are using floats you should also use a comparison
operation.

 mysql> select if(1>2,2,3); -> 3

4.8 Mathematical functions.

All mathematical functions returns NULL in the case of a error.

- Sign. Changes sign of argument.

 mysql> select - 2; -> -2

ABS() Absolute value.

 mysql> select abs(2); -> 2
 mysql> select abs(-32); -> 32

SIGN() Sign of argument. Returns -1, 0 or 1.

 mysql> select sign(-32); -> -1
 mysql> select sign(0); -> 0
 mysql> select sign(234); -> 1

MOD() % Modulo (like % in C).

 mysql> select mod(234, 10); -> 4
 mysql> select 253 % 7; -> 1
 mysql> select mod(29,9); -> 2

FLOOR() Largest integer value not greater than x.

 mysql> select floor(1.23); -> 1
 mysql> select floor(-1.23); -> -2

CEILING() Smallest integer value not less than x.

 mysql> select ceiling(1.23); -> 2
 mysql> select ceiling(-1.23); -> -1

ROUND(N) Round argument N to an integer.

 mysql> select round(-1.23); -> -1
 mysql> select round(-1.58); -> -2
 mysql> select round(1.58); -> 2

ROUND(Number,Decimals) Round argument Number to a number with
Decimals decimals.

 mysql> select ROUND(1.298, 1); -> 1.3

EXP(N) Returns the value of e (the base of natural logarithms) raised to the
power of N.

 mysql> select exp(2); -> 7.389056
 mysql> select exp(-2); -> 0.135335

LOG(X) Return the natural logarithm of X.

 mysql> select log(2); -> 0.693147
 mysql> select log(-2); -> NULL

LOG10(X) return the base-10 logarithm of X.

 mysql> select log10(2); -> 0.301030
 mysql> select log10(100); -> 2.000000
 mysql> select log10(-100); -> NULL

POW(X,Y)
POWER(X,Y) Return the value of X raised to the power of Y.

 mysql> select pow(2,2); -> 4.000000
 mysql> select pow(2,-2); -> 0.250000

sqrt(X) Returns the non-negative square root of X.

 mysql> select sqrt(4); -> 2.000000
 mysql> select sqrt(20); -> 4.472136

PI() Return the value of PI.

 mysql> select PI(); -> 3.141593

COS(X) Return the cosine of X, where X is given in radians.

 mysql> select cos(PI()); -> -1.000000

SIN(X) Return the sine of X, where X is given in radians.

 mysql> select sin(PI()); -> 0.000000

TAN(X) Returns the tangent of X, where X is given in radians.

 mysql> select tan(PI()+1); -> 1.557408

ACOS(X) Return the arc cosine of X; that is the value whose cosine is X. If X is not in
the range -1 to 1 NULL is returned.

 mysql> select ACOS(1); -> 0.000000
 mysql> select ACOS(1.0001); -> NULL
 mysql> select ACOS(0); -> 1.570796

ASIN(X) Return the arc sine of X; that is the value whose sine is X. If X is not in the
range -1 to 1 NULL is
 returned.

 mysql> select ASIN(0.2); -> 0.201358
 mysql> select ASIN('foo'); -> 0.000000

ATAN(X) Return the arc tangent of X; that is the value whose tangent is X.

 mysql> select ATAN(2); -> 1.107149
 mysql> select ATAN(-2); -> -1.107149

ATAN2(X,Y) Return the arc tangent of the two variables X and Y. It is similar to
calculating the arc tangent of Y / X, except that the signs of both

arguments are used to determine the quadrant of the result.

 mysql> select ATAN(-2,2); -> -0.785398
 mysql> select ATAN(PI(),0); -> 1.570796

COT(N) Return the cotangens of N.

 mysql> select COT(12); -> -1.57267341
 mysql> select COT(0); -> NULL

RAND([X]) Returns a random float, 0 <= x <= 1.0, using the integer expression X as
the optional seed value.

 mysql> SELECT RAND(); -> 0.5925
 mysql> SELECT RAND(20); -> 0.1811
 mysql> SELECT RAND(20); -> 0.1811
 mysql> SELECT RAND(); -> 0.2079
 mysql> SELECT RAND(); -> 0.7888

One can't do an ORDER BY on a column with RAND() values because ORDER BY
would evaluate the column multiple times.
MIN(X,Y...)

Min value of arguments. Must have 2 or more arguments, else these are GROUP BY
functions. The arguments are compared as numbers. If no records are found NULL is
returned.

 mysql> SELECT MIN(2,0); -> 0
 mysql> SELECT MIN(34,3,5,767); -> 3
 mysql> SELECT MIN(a) from table where 1=0; -> NULL

MAX(X,Y...) Max value of arguments. Must have 2 or more arguments, else these are
GROUP BY functions. The arguments are compared as numbers. If no
records are found NULL is returned.

 mysql> SELECT MAX(34,3,5,767); -> 767
 mysql> SELECT MAX(2,0,4,5,34); -> 34
 mysql> SELECT MAX(a) from table where 1=0; -> NULL

DEGREES(N) Return N converted from radians to degrees.

 mysql> select DEGREES(PI()); -> 180.000000

RADIANS(N) Return N converted from degrees to radians.

 mysql> select RADIANS(90); -> 1.570796

TRUNCATE(Number, Decimals) Truncate number Number to Decimals decimals.

 mysql> select TRUNCATE(1.223,1); -> 1.2
 mysql> select TRUNCATE(1.999,1); -> 1.9
 mysql> select TRUNCATE(1.999,0); -> 1

4.9 String functions.

ASCII(S) Returns the ASCII code value of the leftmost character of S. If S is NULL
return NULL.

 mysql> SELECT ascii(2); -> 50
 mysql> SELECT ascii('dx'); -> 100

CHAR(X,...) Returns a string that consists of the characters given by the ASCII code
values of the arguments. NULLs are skipped.

 mysql> SELECT char(77,121,83,81,'76'); -> 'MySQL'

CONCAT(X,Y...) Concatenates strings. May have more than 2 arguments.

 mysql> SELECT CONCAT('My', 'S', 'QL'); -> 'MySQL'

LENGTH(S) Length of string.
OCTET_LENGTH(S)
CHAR_LENGTH(S)
CHARACTER_LENGTH(S)

 mysql> SELECT length('text'); -> 4
 mysql> SELECT octet_length('text'); -> 4

LOCATE(A,B) Returns position of A substring in B. The first position is 1.
POSITION(B IN A) Returns 0 if A is not in B.

 mysql> select locate('bar', 'foobarbar'); -> 4
 mysql> select locate('xbar', 'foobar'); -> 0

INSTR(A,B) Returns position of first substring B in string A. This is the same as
LOCATE with swapped parameters.

 mysql> select instr('foobarbar', 'bar'); -> 4
 mysql> select instr('xbar', 'foobar'); -> 0

LPAD(A,B,C) Left pad (at the start) the string A with C until A's length is B.

 mysql> select lpad('hi',4,'??') -> '??hi'

RPAD(A,B,C) Right pad (at the end) the string A with C until A's length is B.

 mysql> select lpad('hi',5,'?') -> 'hi???'

LOCATE(A,B,C) Returns position of first substring A in string B starting at C.

 mysql> select locate('bar', 'foobarbar',5); -> 7

LEFT(str,length) Gets length in characters from beginning of string.

 mysql> select left('foobarbar', 5); -> 'fooba'

RIGHT(A,B)
SUBSTRING(A FROM B) Gets B characters from end of string A.

 mysql> select right('foobarbar', 5); -> 'arbar'
 mysql> select substring('foobarbar' from 5); -> 'arbar'

LTRIM(str) Removes space characters from the beginning of string.

 mysql> select ltrim(' barbar'); -> 'barbar'

RTRIM(str) Removes space characters from the end of string.

 mysql> select rtrim('barbar '); -> 'barbar'

TRIM([[BOTH | LEADING | TRAILING] [A] FROM] B)

Returns a character string with all A prefixes and/or suffixes removed from B. If
BOTH, LEADING and TRAILING isn't used BOTH are assumed. If A is not given, then
spaces are removed.

 mysql> select trim(' bar '); -> 'bar'
 mysql> select trim(leading 'x' from 'xxxbarxxx'); -> 'barxxx'
 mysql> select trim(both 'x' from 'xxxbarxxx'); -> 'bar'
 mysql> select trim(trailing 'xyz' from 'barxxyz'); -> 'barx'

SOUNDEX(S)

Gets a soundex string from S. Two strings that sound 'about the same' should have
identical soundex strings. A 'standard' soundex string is 4 characters long, but this
function returns an arbitrary long string. One can use SUBSTRING on the result to get a
'standard' soundex string. All non alpha characters are ignored in the given string. All
characters outside the A-Z range are treated as vocals.

 mysql> select soundex('Hello'); -> 'H400'
 mysql> select soundex('Bättre'); -> 'B360'
 mysql> select soundex('Quadratically'); -> 'Q36324'

SUBSTRING(A, B, C)
SUBSTRING(A FROM B FOR C)
MID(A, B, C)

Returns substring from A starting at B with C chars. The variant with FROM is ANSI
SQL 92 syntax.

 mysql> select substring('Quadratically',5,6); -> ratica

SUBSTRING_INDEX(String, Delimiter, Count)

Returns the substring from String after Count Delimiters. If Count is positive the strings
are searched from left else if count is negative the substrings are searched and returned
from right.

 mysql> select substring_index('www.tcx.se', '.', 2); -> 'www.tcx'
 mysql> select substring_index('www.tcx.se', '.', -2); -> 'tcx.se'

SPACE(N) Return a string of N spaces.

 mysql> select SPACE(6); -> ' '

REPLACE(A, B, C) Replaces all occurrences of string B in string A with string C.

 mysql> select replace('www.tcx.se', 'w', 'Ww'); -> 'WwWwWw.tcx.se'

REPEAT(String, Count)

Repeats String Count times. If Count <= 0 returns a empty string. If String or Count is
NULL or LENGTH(string)*count > max_allowed_size returns NULL.

 mysql> select repeat('MySQL', 3); -> 'MySQLMySQLMySQL'

REVERSE(String) Reverses all characters in string.

 mysql> select reverse('abc'); -> 'cba'

INSERT(Org, Start, Length, New)

Replaces substring in Org starging at Start and Length long with New. First position in
Org is numbered 1.

 mysql> select insert('Quadratic', 3, 4, 'What'); -> 'QuWhattic'

INTERVAL(N, N1, N2, N3...)

It is required that Nn > N3 > N2 > N1 is this function shall work. This is because a
binary search is used (Very fast). Returns 0 if N < N1, 1 if N < N2 and so on. All
arguments are treated as numbers.

 mysql> select INTERVAL(23, 1, 15, 17, 30, 44, 200); -> 3
 mysql> select INTERVAL(10, 1, 10, 100, 1000); -> 2
 mysql> select INTERVAL(22, 23, 30, 44, 200); -> 0

ELT(N, A1, A2, A3...)

Returns A1 if N = 1, A2 if N = 2 and so on. If N is less than 1 or bigger than the number
of arguments NULL is returned.

 mysql> select elt(1, 'ej', 'Heja', 'hej', 'foo'); -> 'ej'
 mysql> select elt(4, 'ej', 'Heja', 'hej', 'foo'); -> 'foo'

FIELD(S, S1, S2, S3...)

Returns index of S in S1, S2, S3... list. The complement of ELT(). Return 0 when S is not
found.

 mysql> select FIELD('ej', 'Hej', 'ej', 'Heja', 'hej', 'foo'); -> 2
 mysql> select FIELD('fo', 'Hej', 'ej', 'Heja', 'hej', 'foo'); -> 0

FIND_IN_SET(string,string of strings)

Returns a value 1 to N if the 'string' is in 'string of strings'. A 'string of strings' is a string
where each different value is separated with a ','. If the first argument is a constant
string and the second is a column of type SET, the FIND_IN_SET is optimized to use bit
arithmetic!

 mysql> SELECT FIND_IN_SET('b','a,b,c,d') -> 2

This function will not work properly if the first argument contains a ','.

LCASE(A)
LOWER(A)

Changes A to lower case according to current character set ,dmappings (Default
Latin1).

 mysql> select lcase('QUADRATICALLY'); -> 'quadratically'

UCASE(A) Changes A to upper case.
UPPER(A)

 mysql> select ucase('Hej'); -> 'HEJ'

4.10 Date and time functions.

Some examples using more than one date function:

Select all record with a date_field from the last 30 days.

SELECT something FROM table
WHERE TO_DAYS(NOW()) - TO_DAYS(date_field) <= 30;

A Date expression may be a date string, a datetime string, a timestamp([6 | 8 | 14]) or a
number of format YYMMDD or YYYYMMDD.

In a date expression a year may be 2 or 4 digits. 2 digits is assumed to be in the range
1970-2069. Dates 100-199 00' can be stored and retrieved as 0000-00-00.

If you use a date function with a number, then if the length of the number is 4, 8 or >=
14 then the year is assumed to have 4 digits. In all other cases the year is assumed to be
the 2 first digits in the given number. To be on the safe side when using dates as
numbers (not strings) one should always use 4 digit dates! If not you will get in trouble

with year 2000 when a number 002001 is sent to the date functions as '2001' instead of
the date '20002001'. '002001' will of course work correctly!

A Time expression may be a date string, a datetime string, a timestamp([6 | 8 | 14]) or
a number of format HHMMSS or YYYYMMDDHHMMSS.

DAYOFWEEK(date expr)

Gets weekday for Date (1 = Sunday, 2 = Monday, 2 = Tuesday ..) This is according to
the ODBC standard.

 mysql> select dayofweek('1998-02-03'); -> 3

WEEKDAY(date expr) Gets weekday for Date (0 = Monday, 1 = Tuesday ..)

 mysql> select WEEKDAY('1997-10-04 22:23:00'); -> 5
 mysql> select WEEKDAY('1997-11-05'); -> 2

DAYOFMONTH(date expr) Returns day of month (1-31)

 mysql> select DAYOFMONTH('1998-02-03'); -> 3

DAYOFYEAR(date expr) Returns day of year (1-366)

 mysql> select DAYOFYEAR('1998-02-03'); -> 34

MONTH(date expr) Returns month (1-12)

 mysql> select MONTH('1998-02-03'); -> 02

DAYNAME(date expr) Returns the name of the day.

 mysql> select dayname("1998-02-05"); -> Thursday

MONTHNAME(date expr) Returns the name of the month.

 mysql> select monthname("1998-02-05"); -> February

QUARTER(date expr) Returns quarter (1-4).

 mysql> select QUARTER('98-04-01'); -> 2

WEEK(date expr)

Returns week (1-53) on locations where Sunday is the first day of the year

 mysql> select WEEK('98-02-20'); -> 7

YEAR(date expr) Returns year (1000-9999).

 mysql> select YEAR('98-02-03'); -> 1998

HOUR(time expr) Returns hour (0-23)

 mysql> select HOUR('10:05:03'); -> 10

MINUTE(time expr) Returns minute (0-59).

 mysql> select MINUTE('98-02-03 10:05:03'); -> 5

SECOND(time expr) Returns seconds (1000-9999).

 mysql> select SECOND('10:05:03'); -> 3

PERIOD_ADD(P, N)

Adds N months to period P (of type YYMM or YYYYMM). Returns YYYYMM.

 mysql> select PERIOD_ADD(9801,2); -> 199803

PERIOD_DIFF(A, B)

Returns months between periods A and B. A and B should be of format YYMM or
YYYYMM.

 mysql> select PERIOD_DIFF(9802,199703); -> 11

TO_DAYS(Date)

Changes a Date to a daynumber (Number of days since year 0). Date may be a DATE
string, a DATETIME string, a TIMESTAMP([6 | 8 | 14]) or a number of format
YYMMDD or YYYYMMDD.

 mysql> select TO_DAYS(9505); -> 733364
 mysql> select TO_DAYS('1997-10-07); -> 729669

FROM_DAYS() Changes a daynumber to a DATE.

 mysql> select from_days(729669); -> 1997-10-07

DATE_FORMAT(Date, Format)

Formats the Date (a date or a timestamp) according to the Format string. The following
format commands are known:
 M Month name
 W Weekday name
 D Day of the month with english suffix
 Y Year with 4 digits
 y Year with 2 digits
 a Abbreviated weekday name (Sun..Sat)
 d Day of the month, numeric
 m Month, numeric
 b Abbreviated month name (Jan.Dec)
 j Day of year (001..366)
 H Hour (00..23)
 k Hour (0..23)
 h Hour (01..12)
 I Hour (01..12)
 l Hour (1..12)
 i Minutes, numeric
 r Time, 12-hour (hh:mm:ss [AP]M)
 T Time, 24-hour (hh:mm:ss)
 S Seconds (00..59)
 s Seconds (00..59)
 p AM or PM
 w Day of the week (0=Sunday..)
 % single % are ignored. Use %% for a % (for future extensions).

 All other characters are copied to the result.

 mysql> select date_format('1997-10-04 22:23:00', '%W %M %Y %h:%i:%s');
 -> 'Saturday October 1997 22:23:00'

 mysql> select date_format('1997-10-04 22:23:00', '%D %y %a %d %m %b
%j %H %k %I %r %T %S %w');

 -> '4th 97 Sat 04 10 Oct 277 22 22 10 10:23:00 PM 22:23:00 00 6'

For the moment % is optional. In future versions of MySQL % will be required.

TIME_FORMAT(time expr, format) This can be used like the DATE_FORMAT above,
but only with the format options which handle hours, minutes and seconds. Other
options give NULL value or 0.

CURDATE()
CURRENT_DATE

Returns today's date. In form YYYYMMDD or 'YYYY-MM-DD' depending on whether
CURDATE() is used in a number or string context.

 mysql> select CURDATE(); -> '1997-12-15'
 mysql> select CURDATE()+0; -> 19971215

CURTIME()
CURRENT_TIME

Returns the current time in the form HHMMSS or 'HH:MM:SS', depending on whether
CURTIME() is used in a number or string context.

 mysql> select CURTIME(); -> '23:50:20'
 mysql> select CURTIME()+0; -> 235026

NOW()
SYSDATE()
CURRENT_TIMESTAMP

Returns the current time. In format YYYYMMDDHHMMSS or 'YYYY-MM-DD
HH:MM:SS' depending on whether NOW() is used in a number or string context.

 mysql> select NOW(); -> '1997-12-15 23:51:26'
 mysql> select NOW()+0; -> 19971215235131

UNIX_TIMESTAMP([date expression])

If called without any arguments, a unix timestamp (seconds in GMT since 1970.01.01
00:00:00). Normally it is called with a TIMESTAMP column as an argument in which
case it returns the columns value in seconds. Date may also be a date string, a datetime
string, or a number of format YYMMDD or YYYMMDD in local time.

 mysql> select UNIX_TIMESTAMP(); -> 882226357
 mysql> select UNIX_TIMESTAMP('1997-10-04 22:23:00'); -> 875996580

FROM_UNIXTIME(Unix_timestamp)

Returns a string of the timestamp in YYYY-MM-DD HH:MM:SS or
YYYYMMDDHHMMSS format depending on context (numeric/string).

 mysql> select FROM_UNIXTIME(875996580); -> '1997-10-04 22:23:00'

FROM_UNIXTIME(Unix_timestamp, Format_string) Returns a string of the timestamp
formated according to the Format_string. The format string may contain:

M Month, textual
W Day (of the week), textual
D Day (of the month), numeric plus english suffix
Y Year, numeric, 4 digits
y Year, numeric, 2 digits
m Month, numeric
d Day (of the month), numeric
h Hour, numeric
i Minutes, numeric
s Seconds, numeric
w Day (of the week), numeric
All other All other characters are just copied.

 mysql> select FROM_UNIXTIME(UNIX_TIMESTAMP(), 'Y D M h:m:s x');
 -> '1997 23rd December 03:12:30 x'

SEC_TO_TIME(Seconds)

Returns the hours, minutes and seconds of the argument in H:MM:SS or HMMSS
format depending on context.

 mysql> select SEC_TO_TIME(2378); -> '00:39:38'
 mysql> select SEC_TO_TIME(2378)+0; -> 3938

TIME_TO_SEC(Time)

Converts Time to seconds.

 mysql> select TIME_TO_SEC('22:23:00'); -> 80580
 mysql> select TIME_TO_SEC('00:39:38'); -> 2378

4.11 Miscellaneous functions.

DATABASE() Returns current database name.

 mysql> select DATABASE(); -> 'test'

USER()
SYSTEM_USER()
SESSION_USER() Returns current user name.

 mysql> select USER(); -> 'davida'

PASSWORD(String)

Calculates a password string from plaintext password String. This must be used to
store a password in the 'user' grant table.

 mysql> select PASSWORD('badpwd'); -> '7f84554057dd964b'

ENCRYPT(String[, Salt])

Crypt String with the unix crypt() command. The Salt should be a string with 2
characters. If crypt() was not found NULL will always be returned.

LAST_INSERT_ID()

Returns the last automatically generated value that was set in an auto_increment
column.

 mysql> select LAST_INSERT_ID(); -> 1

FORMAT(Nr, Num)

Formats number Nr to a Format like '#,###,###.##' with Num decimals.

 mysql> select FORMAT(12332.33, 2); -> '12,332.33'

VERSION Return the version of the MySQL server.

 mysql> select version(); -> '3.21.16-beta-log'

GET_LOCK(String,timeout)

Tries to get a lock on named 'String' with a timeout of 'timeout' seconds. Returns 1 if
one got the lock, 0 on timeout and NULL on error (like out of memory or if thread was
killed with mysqladmin kill. A lock is released if one executes RELEASE_LOCK,
executes a new GET_LOCK or if the thread ends. This function can be used to
implement application locks or simulate record locks.

 mysql> select get_lock("automaticly released",10); -> 1
 mysql> select get_lock("test",10); -> 1
 mysql> select release_lock("test"); -> 1
 mysql> select release_lock("automaticly released") -> NULL

RELEASE_LOCK(String)

Releases a lock this thread has got with GET_LOCK. Returns 1 if the lock was released,
0 if lock wasn't locked by this thread and NULL if the lock 'String' didn't exist.

4.12 Functions for GROUP BY clause.

COUNT(Expr)

Count number of non NULL rows. count(*) is optimised to return very quickly if no
other column is used in the SELECT.

 select count(*) from student;
 select count(if(length(name)>3,1,NULL)) from student;

AVG(expr) Average value of expr.
MIN(expr)
MAX(expr) Minimum/Maximum value of expr. min() and max() may take a string

argument and will then return the minimum/maximum string value.

SUM(expr) Sum of expr.

STD(expr)
STDDEV(expr) (Oracle format) Standard derivative of expression. This is a extension

to ANSI SQL.

BIT_OR(expr) The bitwise OR of all bits in expr. Calculation done with 64 bit
precision.

BIT_AND(expr) The bitwise AND of all bits in expr. Calculation done with 64 bit
precision.

MySQL has extended the use of GROUP BY. You can use columns or calculations in the
SELECT expressions which don't appear in the GROUP BY part. This stands for 'any
possible value for this group'. By using this, one can get a higher performance by
avoiding sorting and grouping on unnecessary items. For example, in the following
query one doesn't need to group on b.name:

SELECT a.id,b.name,COUNT(*) from a,b WHERE a.id=b.id GROUP BY a.id

In ANSI SQL you would have to add the customer.name in the GROUP BY for the
following query. In MySQL the name redundant.

SELECT order.custid,customer.name,max(payments) from order,customer
WHERE order.custid = customer.custid GROUP BY order.custid;

Note that you can't use expressions in the GROUP BY or ORDER BY clause. You can on
the other hand use an alias on a expression and use this to solve the problem:

SELECT id,FLOOR(value/100) AS val FROM table_name GROUP BY id,val ORDER BY
val

5.0 The DBI interface

5.1 The DBI Interface for Perl

Portable DBI methods.

connect Establish a connection to a database server
prepare Get a SQL statement ready for execution
do Prepares and executes a SQL statement
disconnect Disconnect from the database server
quote Quote strings/blobs to be inserted
execute Executes prepared statements
fetchrow_array fetch the next row as an array of fields.
fetchrow_arrayref fetch next row as a reference array of fields
fetchrow_hashref fetch next row as a reference to a hashtable
fetchall_arrayref Get all data as a array of arrays
finish finish a statement and let the system free resources
rows Returns the number of rows affected
data_sources Return an array of databases available on localhost
ChopBlanks Shall fetchrow trim spaces
NUM_OF_PARAMS Number of placeholders in the prepared statement
NULLABLE Which columns can be NULL

MySQL specific methods.

insertid The latest auto_increment value
is_blob Which column are BLOBs
is_key Which columns are keys
is_num Which columns are numeric
is_pri_key Which columns are primary keys
is_not_null Which columns can NOT be NULL. See NULLABLE
length Maximum theoretically possible column sizes
max_length Maximum physical present column sizes
NAME Column names
NUM_OF_FIELDS Number of fields returned.
table Table names in returned set
type All column types
_CreateDB Create a database
_DropDB Drop a database. THIS IS DANGEROUS

connect You use the connect method to make a database connection to the
data source. The $data_source value should begin with
DBI:driver_name:. Example connect methods with the DBD::mysql
driver:

$dbh = DBI->connect("DBI:mysql:$database", $user, $password);
$dbh = DBI->connect("DBI:mysql:$database:$hostname",

 $user, $password);
$dbh = DBI->connect("DBI:mysql:$database:$hostname:$port",

 $user, $password);

If the username and/or password are undefined, then the DBI will
use the values of the DBI_USER, DBI_PASS environment variables
respectively. If you don't specify a hostname, then it will default to
"localhost". If you don't specify a port, then it defaults to the
default mysql port (3306).

prepare Prepare gets a SQL statement ready for execution by the database
engine and returns a statement handle ($sth) which invokes the
execute method. Example:

$sth = $dbh->prepare($statement) or die "Can't prepare
$statement:

$dbh->errstr\n";

do The "do" method prepares and executes a SQL statement and
returns the number of rows effected.

This method is generally used for "non-select" statements which
can not be prepared in advance (driver limitation) or which do not
need to executed more than once (inserts, deletes, etc.).

Examples:

$rc = $dbh->do($statement) or die "Can't execute $statement:
$dbh- >errstr\n";

disconnect Disconnect will disconnect the database handle from the database.
This is typically called right before you exit from the program.

Example:

$rc = $dbh->disconnect;

quote The quote method is used to "escape" any special characters
contained in the string and to add the required outer quotation
marks.

$sql = $dbh->quote($string)

execute This method executes the prepared statement. For non-select
statements, it returns the number of rows affected. For select
statements, execute only starts the SQL query in the database. You
need to use one of the fetch_* methods below to retrieve the data.
Example:

$rv = $sth->execute or die "can't execute the query: $sth->errstr;

fetchrow_array This method "fetches" the next row of data and returns it as an
array of field values. Example:

while(@row = $sth->fetchrow_array) {
print qw($row[0]\t$row[1]\t$row[2]\n);

}

fetchrow_arrayref This method "fetches" the next row of data and returns it as a
reference to an array of field values.

Example:

while($row_ref = $sth->fetchrow_arrayref) {
print qw($row_ref->[0]\t$row_ref->[1]\t$row_ref->[2]\n);

}

fetchrow_hashref This method fetches a row of data and returns a reference to a hash
table containing field name/value pairs. This method is not nearly
as efficient as using array references as demonstrated above.

Example:

while($hash_ref = $sth->fetchrow_hashref) {
print qw($hash_ref->{firstname}\t$hash_ref->{lastname}\t\
$hash_ref- > title}\n);

}

fetchall_arrayref This method is used to get all the data (rows) to be returned from
the SQL statement. It returns a reference to an array of arrays of
references to each row. You access/print the data by using a nested
loop. Example:

my $table = $sth->fetchall_arrayref or die "$sth->errstr\n";
my($i, $j);
for $i (0 .. $#{$table}) {

for $j (0 .. $#{$table->[$i]}) {
print "$table->[$i][$j]\t";
}

print "\n";
}

finish Indicates that no more data will be fetched from this statement
handle. You call this method to free up the statement handle and
any system resources it may be holding. Example:

$rc = $sth->finish;

rows Returns the number of rows affected (updated, deleted, etc.) from
the last command. This is usually used after a do() or non-select
execute() statement.

$rv = $sth->rows;

NULLABLE A reference to an array of boolean values; TRUE indicates that this
column may contain NULLs.

$null_possible = $sth->{NULLABLE};

NUM_OF_FIELDS Number of fields returned by a SELECT or LISTFIELDS statement.
You may use this for checking whether a statement returned a
result: A zero value indicates a non-SELECT statement like
INSERT,

 DELETE or UPDATE.

$nr_of_fields = $sth->{NUM_OF_FIELDS};

data_sources This method returns an array of databases available to the mysql
daemon on localhost.

@dbs = DBI->data_sources("mysql");

ChopBlanks This determines whether a fetchrow will chop preceding and
trailing blanks off the returned values.

$sth->{'ChopBlanks') =1;

MySQL specific methods.

insertid If you use the auto-increment feature of mysql, the new auto-
incremented values will be stored here.

$new_id = $sth->{insertid};

is_blob Reference to an array of boolean values; TRUE indicates that the
respective column is a blob.

$keys = $sth->{is_blob};

is_key Reference to an array of boolean values; TRUE indicates, that the
respective column is a key.

$keys = $sth->{is_key};

is_num Reference to an array of boolean values; TRUE indicates, that the
respective column contains numeric values.

$nums = $sth->{is_num};

is_pri_key Reference to an array of boolean values; TRUE indicates, that the
respective column is a primary key.

$pri_keys = $sth->{is_pri_key};

is_not_null A reference to an array of boolean values; FALSE indicates that this
column may contain NULLs.

You should better use the NULLABLE attribute above which is a
DBI standard.

$not_nulls = $sth->{is_not_null};

max_length
length A reference to an array of maximum column sizes. The max_length

is the maximum physically present in the result table, length gives
the theoretically possible maximum.

$max_lengths = $sth->{max_length};
$lengths = $sth->{length};

NAME A reference to an array of column names.

$names = $sth->{NAME};

table Returns a reference to an array of table names.

$tables = $sth->{table};

5.2 More DBI/DBD information

You can use the perldoc command to get more information about DBI.

perldoc DBI
perldoc DBI::FAQ
perldoc mysql

You can also use the pod2man, pod2html, etc.. tools to translate to other formats.

